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Abstract-The contributions of coupling with the electric field and mass of electrode coatings
are taken into account in solutions of equations governing coupled thickness-shear, flexure and
face-shear vibrational modes in rotated- Y-cut quartz plates.

INTRODUCTION

In a recent paper [1J, a derivation was given of a set of two-dimensional equations of
motion of piezoelectric crystal plates-applicable up to the frequencies of the fundamental
thickness-shear modes. Solutions of the equations were exhibited for the simple thickness­
shear modes (i.e. thickness-shear motions independent of the coordinates in the plane of
the plate) in infinite, rotated- Y-cut quartz plates executing free vibrations without electrode
coatings on the plate-faces and forced vibrations induced by an alternating voltage applied
to electrode coatings on the faces. In the present paper, solutions are given for free and
forced vibrations in which there is variation of displacement along one direction in the
plane of the plate owing to the presence of a pair of free edges in the orthogonal direction.

Quartz is a trigonal crystal: with one axis of trigonal symmetry and, in the plane at right
angles, three digonal axes 1200 apart. A rotated- Y-cut is a plate with one digonal axis
(designated, here, by the coordinate Xl) in the plane of the plate and with an arbitrary angle
(+35 0 15' for the AT-cut, -490 12' for the BT-cut) between the normal to the plate and the
trigonal axis. In the solutions to be considered, the dependent variables are functions of Xl

alone, the free edges of the plate are at Xl = ±aand the motion comprises coupled thickness­
shear, flexure and face-shear modes. The corresponding solution without consideration of
the electric field and the mass of the electrodes is the one designated as Group A in a previous
paper [2].

In the case offree vibrations of the plate without electrodes, an additional branch appears
in the dispersion relation for straight-crested waves when coupling with the electric field is
taken into account. However, the additional wave is a non-propagating one so that no addi­
tional resonances are found when the edge conditions are applied. Furthermore, the three
remaining branches are not altered very much, either qualitatively or quantitatively, because
the additional (electrical) terms, for quartz, are very small in comparisons with the mechan­
ical terms.

In the case of forced vibrations, the uniformity of the voltage applied to the electrode
coatings on the faces of the plate results in the total suppression of the additional branch
in the dispersion relation for straight-crested waves. Also, the electric field affects the three
surviving branches even less than in the case of free vibrations without electrodes. The
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effect of the mass of the electrode films on those branches is somewhat larger, but not of
order greater than 10- 2 for the usual thicknesses of electrodes; so that, again, the frequency
spectrum for the bounded plate is not changed very much from that calculated in [2]. The
solution does, though, yield a formula for the surface charge.

FREE VIBRATIONS

From (27), (28), (30) and (32) of [1], the equations on the dependent variables u~O), u~O), uil )
and </>(1), to be solved for the case of free vibrations without electrodes, are

K I C56 U~~)II + Kic66(U~~)11 + U~~)I) + Kle26 </>~i) = pu~O),

C55 U~~)II + KIC56(U~~)11 + U\~)I) + e25 </>~i) == pu~O)

I'll ui~)11 - 3b - 2K1 [C56 U~~)I + K I C66(U~~)1 + uil» + e26 </>(1)] + eW4>~n = puP),

e(1)u(1) - 3b- 2[e UfO) + K e (UfO) + U(I» - e ,/,(1)] - e ,/,(1) - 0II I,ll 253,1 126 2,1 I 22'1' 11'1',11 - ,

with edge conditions

where

(1)

(2)

(3)

TiG.} = 2bK I [C 56 U~~)I + KIC66(U~~)1 + u~1) + e26 4>(1)],

T~Ol = 2b[C 55 U~~)I + KIC56(U~~)1 + ui l » + e25 </>(1)],

T(1) - 2b 3('IJ U(I) + e(I),/,(1»
II -"J 1111,1 11'1',1'

Di1) = !b3(eWu~~)1 - ell4>~p),

and Ki = 1[2/12. Note that the face-charge D(l) has been set equal to zero, in the fourth of(1),
as the faces of the plate are not coated with electrodes. Note, also, that the terms in u~O)

and 4>(l) in the first of (1) and the term in 4>(1) in the second of (1) were inadvertently omitted
in (27) and (28), respectively, of [1].

For the solution of (1), we take, omitting a factor eiwt
,

u~O) = A 2 b sin ~Xl'

u~O) = A 3 b sin ~Xl'

uil) = A 4 cos ~Xl'

4>(1) = A 5 cos ~XI'
(4)

Then, upon substituting (4) in (1), we find

(e - 302
)A2 + C56 ~2A 3 + ';A4 + e 26 ~A5 = 0,

C56 ~2A 2 + (C 55 ';2 - 30
2
)A 3 + C56 ~A4 + e 25 ~A5 = 0,

~A2 + C56 ~A3 + (Yll~2 + 1 - 02)A 4 + (e26 + eW~2)A5 = 0,

e26 ~A2 + e25 ~A3 + (e26 + eW~2)A4 - (e 22 + e\?~2)A5 = 0,

where

(5)

0 2 = pb
2
w

2
/3Ki c 66 '

C55 = C55/K i c 66 ' C56 = C56/K I C66 '

e25 = e25/K ic66 , e 26 = e26/Klc66,

622 = B22 /Kic 66 ,

~ = ~b,

YII = I'll/3Kic66 ,

e\? = e\? 3Kic66'

611 = Bll /3Kic66'
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If the electric terms are omitted (e = e = 0), the four equations (5) reduce to the three
equations (II) in [2J-after noting that the coefficient of A 2 in the third of (II) in [2J should
be ~ instead of e.

The dispersion relation for straight-crested waves, obtained by setting the determinant of
the coefficients in (5) equal to zero, is a quartic equation in ~2. Thus, there are four branches
instead of the three (thickness-shear, flexure and face-shear) found in (II) of [2]. The fourth
(electric) branch is an imaginary one for all frequencies, representing a non-propagating
mode, and hence can contribute no additional resonances to the frequency spectrum of a
plate of finite length. To see what effect the electric branch has on the remaining three
(mechanical) branches, it is advantageous to eliminate As from (5) so as to arrive at the
quartic equation in the form

where

B22 e - 302

B23 ~2

B24~

B23 ~2

B33 ~2 - 302

B34~

B24~

B34~ = 0
YI1~2 + B44 - 0 2

(6)

B22 = 1 + ei6e~l,

B A A2-1
33 = Css t e2S e~ ,

B 1 ( A +A(l»):2)2-1
44= + e26 ell'> e~,

d A):2 A
an e~=ell'> +e22'

The second terms in the Bpq comprise the entire contribution of the electric field; and,
when they are eliminated, as may be done by setting the piezoelectric constants e equal to
zero, the quartic equation reduces to the cubic (II)I of [2]. Now, for the small ~ to which
the equations of motion are restricted, the second terms in the Bpq are all of the order of
e2lec. For example, when ~ = 0,

For the AT-cut of quartz,

e26 = -9,490 x 10- 6 C/cm2
,

e22 = 39·816 x 10- 21 C 2/dyn cm2,

C66 = 29-013 X 1010 dyn/cm2
,

as calculated from Bechmann's constants for IX-quartz [3J by Sykes's formulas [4J for
rotated- Y-cuts. Hence, for the AT-cut,

B22 = I + 0-0078;

with similar results for the other Bpq • Accordingly, the presence of the electric terms has
little effect on the mechanical branches of the dispersion relation for straight-crested waves
and, subsequently, on the frequency spectrum of a plate of finite length.

To satisfy the four edge-conditions (2), all four solutions of the type (4), corresponding to
the four roots ~2 of (6), are required. For each ~, (5) has a set of three amplitude ratios
A 2 : A 3 : A 4 : As. Let Ai' i = I, 2, 3, 5, be the value of A 4 for the ith root ~i; and let

A 2 1A4 = IX2i> A 31A4 = IX3i' A sIA 4 = IXSi' i = 1,2,3,5

for each root ~i' Then, for the complete solution of the type (4), again omitting a factor eiwt
,
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3

U~O)= I.bAiIY.2isin~ixl +bAsIY.2ssinh~sx1'
i= 1

3
(1) ,,- -

U1 = L Ai COS ~iXl + As cosh ~s Xl'
i=l

(6)

Upon substituting (6) in (3) and the result in the edge conditions (2), we obtain
3

I. Ajali cos ~;Zi + As a1s cosh ~s a = 0,
i=:l

3

I. Ai a2i cos ~j a + As a2S cosh ~s a = 0,
i::::l

3

I. A ja3j sin ~ia - As a3S sinh ~s a = 0,
i= 1

3

L Aiasi sin ~ia - As ass sinh ~s a= 0,
i=l

(7)

(8)

where a= alb (i.e. the ratio of the half-length to the half-thickness of the plate) and

ali = CSS(X3i~i + K1CS6«(X2i~i + 1) + e 2S (XSi,

a2i = CS6 (X3i ~i + K 1C66(1Y. 2i ~i + 1) + e261Y. S;'

a3i = (1 + }'l?eW(Xs;)~i'

aSi = (eW - 611IY.S;)~i'

The frequency equation is obtained by setting the determinant of the coefficients of the
Ai in (7) equal to zero. For convenience of comparison with the result in [2], the equation
may be expressed in the form

1'1 tan ~la + 1'2 tan ~2a + 1'3 tan ~3a = 0, (9)
where

and

1'1 = f331(f312 f323 - f322 f313),

1'2 = f332(f313/321 - f323f311),

1'3 = /33if311f322 - f321f3d,

(10)

/3ij = aij + aiSasjas} coth ~sa tan ~ja, i = 1, 2;j = 1,2,3

fJ3j = a3j - Cl 3S aSj' j = 1,2,3.

When the electric terms are omitted, (6-10) reduce to (16-20) of [2]. Owing to the
non-propagating character of the electric branch, resulting in no additional resonances,
and its small effect on the mechanical branches, the frequencies obtained from (9) differ
little from those obtained from (19) in [2]; so that the curves marked TS1, F1, and FS1 (for
thickness-shear, flexure and face-shear waves travelling parallel to the Xl direction) in Fig. 3
of [2] would be only slightly changed and, hence, would still fit the Koga-Fukuyo data [5]
shown there.
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FORCED VIBRATIONS

We now consider a plate with like electrode films deposited on its two faces. An alternating
voltage, with drop 2V across the thickness of the plate, is applied to the electrodes. The
first order electric potential is therefore fixed throughout the plate:

The equation of motion (27), (28), (30) and (32) of [1] are, then,

K1C56U~~)11 +K~C66(U~~il +u~~D=p(I +R)ii~O),

C55 U~~)ll + K1C56(U~~)11 + ui~D = p(l + R)ii~O),

Yl1 Ui~)ll - 3b - 2K1 [C 56 U~~)l + K1C66(U~~)1 + ui
1

» + e26 cjP)] = p(I + 3R)iiPJ,

eWui~)ll - 3b- 2[e25 U~~)l + Kle26(u~~)1 + uP» - e22 cjP )]+ D(l) = 0,

(II)

(12)

(13)

where R is the ratio of the mass per unit area of both films to the mass per unit area of the
quartz plate alone; the factors (I + R) and (I + 3R) are obtained from [6]. The surface
charge on each face is tb2 D(1) and K 1 has the value given by Bleustein and Tiersten [7]:

Ki = n
2 [1 + R - 2 8 2] .

12 n (1 + e22 c66 /e26)

The conditions for free edges are again those in (2), but we note, from (3), that the last two
conditions are identical owing to the fixed value (11) of cj/1). The reduction of the number
of boundary conditions from four to three is consistent with the reduction of the number
of dependent variables from four (u~O), u~O), uio and cjP» to three: u~O), u~O), and ui1). The
latter are to be obtained as solutions of the first three of (12); the fourth equation serves
simply as a formula for the surface charge.

We first find a particular solution of (12) for the constant forcing term cjP):

(14)

(omitting a factor eiWI
). Substitution of (14) in (12) yields, as before [1],

(15)

(16)

(18)

(17)

where

-2 3KiC66
OJ = --:=---'-'--

pb 2(1 + 3R)'

-2 3KiC66(I + d6/e22 C6 6)
OJa = pb 2(1 + 3R) .

It may be seen, from (16), that wand wa are the resonance and antiresonance frequencies,
respectively, of the infinite, plated, piezoelectric plate vibrating in the thickness-shear mode.

For the complementary solution, we again take (4), but with ¢(1) = O. Upon substituting
in the first three of (12), we find
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(~2 _ 3R'fP)A2 + CS6 ~2A 3 + ~A4 = 0,

CS6 ~2A 2 + (CSS ~2 - 3R'rF)A3 + CS6 ~A4 = 0,

~A2 + CS6 ~A3 + (')Ill ~2 + 1 - fP)A4 = 0,

(19)

r2 = W/W, R' = (1 + R)/(1 + 3R). (20)

Thus, the dispersion relation for straight-crested waves, obtained by setting the determinant
of the coefficients of A 2 , A 3, A 4 , in (19), equal to zero, is

e- 3R'r22 CS6 ~2 ~

cS 6 ~2 c ss ~2 - 3R'r22 CS6 ~ = 0. (21)
~ CS6~ ')I11~2+1_r22

The three roots of (21) give the usual thickness-shear, flexure and face-shear branches found
in [2], but slightly modified by the influence of the electrode mass, incorporated in R' and
r2 in (21), and by both the electrode mass and the piezoelectric effect as represented in the
formulas (13) and (17) for K 1 and W. However, contrary to the case offree vibrations of the
piezoelectric plate, there is no electric branch: it is suppressed by the uniform electric
potential applied over the electrodes.

For each root ~ i, i = I, 2, 3, of (21), (19) has a pair of amplitude ratios A 2: A 3: A 4 .

Let Ai' i = 1, 2, 3 be the value of A 4 for the ith root ~i; and let

for each ~i' Then, the complete solution may be written as

3
(0) ,,- .

U2 = L...bAirJ.2ism~ixl'
i= 1

3
(I) " - :>U 1 = A o + L... Ai cos <"iXt>

i= 1

rj/!J=b-1V.

The edge conditions (2) now produce only three equations:

3

I Ai (Xli cos ~;Zi = - K] CS6 Ao - e2S b- I V,
i= 1

3

I Ai (X2i cos ~;Zi = -K1C66 A o - e26 b- Iv,
i= I

3

IAil'll~i sin ~;Zi = 0,
i=l

where
(Xli = CSSrJ.3i~i + KICS6(rJ.2i~i + 1),

(X2i = CS6rJ.3i~i + KIC66(rJ.2i~i + 1),

and A o is given by (15).

(22;

(23)

(24)
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For each root ~i of (21), for a given frequency w, the two amplitude ratios IX2i and IX 3i

are obtained from (19). Then (Xli and (X2i are calculated from (24) and inserted in (23),
which may be solved for the three Ai' Thus, uiO), u~O) and uP), in (22), are fully determined.
Finally, D(l), and hence the surface charge, is obtained from the fourth of (12).

The frequency equation is found by setting the determinant of the coefficients of the Ai,
in (23), equal to zero:

(25)

(26)

where
Al = ~ I ((Xl2 (X23 - (X22 (Xl3)'

1'2 = ~2((X13 (X21 - (X23 (XII)'

,43 = ~i(XII(X22 - (X21(X12)'

The frequency spectrum calculated from (25) differs little from that obtained from (19) of [2].
The influence of the electric field is contained entirely in the electrical term in the expression
(13) for 1(1 which, for the AT-cut of quartz, for example, is only

8/n2(1 + 822 C66/e~6) = 0'006. (27)

The influence of the mass of the electrodes makes its appearance in the dispersion relation
(21) in the. terms R' and n as given, in terms of the mass ratio R, by (20), (17) and (13).
As R is usually of the order of 10- 2 or less, the influence of the mass of electrodes on the
frequency spectrum is small qualitatively and, quantitatively, appears mostly as an alteration
of the vertical scale ratio in the usual depiction of the frequency spectrum with frequency
ratio as ordinate and length to thickness-ratio as abscissa, as in Fig. 3 of [2].

For the case of free vibrations of the plate with electrode coatings on its faces, it is only
necessary to set V = o.
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Pe310Me - npH pellIeHHH ypaBHeHHH, onpe~eml1011IHX conplDKeHH.ylO BOJIHy C~BHrOBoro

THna, HlfH6 H BH~hl KOJIe6aHHH nOBepXHOCTHOfO C~BHfa BO Bpa11IaeMhlX BHJTK006palHo
BhlpelaHHhlX KBapueBhlx JIHCTaX 6epYTclI BO BHHMaHHe cnoc06cTBYI011IHe cjJaKTophl BlaHMO­
~eHcTBHlI C HanplllKeHHocThlO 1JIeKTpH'IeCKOfO nOJTlI H 1JTeKTpO~HhIMH nOKphITHlIMH MaCChI.


